Gradient based method for cone programming with application to large-scale compressed sensing

نویسنده

  • Zhaosong Lu
چکیده

In this paper, we study a gradient based method for general cone programming (CP) problems. In particular, we first consider four natural primal-dual convex smooth minimization reformulations for them, and then discuss a variant of Nesterov’s smooth (VNS) method recently proposed by Auslender and Teboulle [1] for solving these reformulations. The associated worst-case major arithmetic operations costs of the VNS method for them are estimated and compared. We show that for a class of CP problems, the VNS method based on the last reformulation generally outperforms that applied to the others. Finally, we discuss the application of the VNS method [1] to some large-scale CP problems arising in compressed sensing, which are highly challenging to simplex and/or interior point (IP) methods. The performance of this method is compared with the IP method [5] that is specially implemented for these problems. Our computational results demonstrate that for these CP problems, the VNS method [1] applied to the mostly suitable reformulation mentioned above substantially outperforms the IP method [5].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...

متن کامل

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

A Compromise Decision-Making Model Based on TOPSIS and VIKOR for Multi-Objective Large- Scale Nonlinear Programming Problems with A Block Angular Structure under Fuzzy Environment

This paper proposes a compromise model, based on a new method, to solve the multiobjectivelarge scale linear programming (MOLSLP) problems with block angular structureinvolving fuzzy parameters. The problem involves fuzzy parameters in the objectivefunctions and constraints. In this compromise programming method, two concepts areconsidered simultaneously. First of them is that the optimal alter...

متن کامل

An Inexact Accelerated Proximal Gradient Method for Large Scale Linearly Constrained Convex SDP

The accelerated proximal gradient (APG) method, first proposed by Nesterov for minimizing smooth convex functions, later extended by Beck and Teboulle to composite convex objective functions, and studied in a unifying manner by Tseng, has proven to be highly efficient in solving some classes of large scale structured convex optimization (possibly nonsmooth) problems, including nuclear norm mini...

متن کامل

Waveform Design using Second Order Cone Programming in Radar Systems

Transmit waveform design is one of the most important problems in active sensing and communication systems. This problem, due to the complexity and non-convexity, has been always the main topic of many papers for the decades. However, still an optimal solution which guarantees a global minimum for this multi-variable optimization problem is not found. In this paper, we propose an attracting met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008